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Collisionless expansion of gases into vacuum 

By RODDAM NARASIMHA 
Guggenheim Aeronautical Laboratory, Cdifornia Institute of Technology 

(Received 11 July 1961) 

The free-molecule limit of several free-flow problems is studied on the basis of the 
collisionless Boltzmann equation. It is shown that the density in the free expansion 
of a gas cloud obeys, under certain conditions, a diffusion equation with a coef- 
ficient directly proportional to the time, and the resulting flow field is described 
in terms of a thick ‘diffusion front ’ travelling asymptotically at a definite velocity 
and growing linearly with time. It is also shown that in any free-molecule free 
expansion the stresses and heat flux can be expressed in terms of viscosity and 
conductivity coefficients, which however increase linearly with time but are such 
that the Stokesian relation is always valid and the Prandtl number has the value 9. 

The flow field due to sources and jets is also discussed, and it is found that the 
jet has a width inversely proportional to the Mach number if the Mach number is 
sufficiently high. Finally, a procedure is indicated for taking approximate 
account of collisions among the molecules. 

1. Introduction 
This paper is concerned with some problems in what may be called ‘free 

gaskinetics’, that is, with the kinetic theory of flows in which interactions with 
solid surfaces play no significant part. The free expansion of a gas cloud and the 
flow in a jet are two examples of this kind of problem. These problems are not 
only of practical interest in the space sciences and in astrophysics, but also have 
some fundamental interest in their own right, as they enable one to concentrate 
on the effect of intermolecular collisions to the exclusion of the uncertain effects of 
interaction with solid surfaces. However, as a necessary first step, even collisions 
among the molecules themselves will be neglected in most of the present report. 

There has been some study, in the recent past, of the free expansion of gas 
clouds, though mostly on the basis of continuum gasdynamics of an inviscid fluid. 
Keller (1956) has investigated a class of solutions of the gasdynamic equations 
for certain types of initial and boundary conditions. Greifinger & Cole (1960) have 
found a very interesting exact solution for one-dimensional free expansion for 
some special (but realistic) values of y (the ratio of specific heats), and have also 
studied the asymptotic flow field for arbitrary y. Dyson (1968) has obtained some 
interesting results for the free expansion of non-spherical gas clouds with an 
initial Gaussian density distribution. 

Attacks on the problem from the gaskinetic viewpoint seem far fewer. 
Molmud (1960) has calculated the density field in free-molecular free expansion 
of symmetric gas clouds by an intuitive method, using an ‘analogy’ with heat 
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diffusion to evaluate his integrals. Keller (1948) has given the result for the free 
expansion of a ‘ half-space ’ . 

Our purpose here is to study these problems very broadly, on the basis of the 
collisionless Boltzmann equation. The general free-flow problem we shall discuss 
can then be posed as follows: given an initial molecular velocity distribution 
function over all of space, and arbitrary time-dependent sources, what is the flow 
field at any later time? 

When one thinks of actual physical problems, there is always a question about 
what a suitable initial distribution is. In  principle the initial distribution is 
perfectly arbitrary (except possibly for some restrictions regarding its moments) ; 
in any specific problem it will have to be deduced, or guessed, from considerations 
other than those set forth here. However, it will be assumed in the following that 
there is some mechanism, apart from intermolecular collisions, which makes the 
initial distribution Maxwellian. For instance, when we consider the expansion of 
a gas cloud as an initial-value problem, the gas may be imagined as having been 
confined within a balloon whose size is much smaller than the mean free path; 
collisions with the surface of the balloon then ensure that the gas has a Maxwellian 
distribution. When the balloon is burst the gas expands freely into the vacuum, 
with no collisions among the molecules. In  any case, the Maxwellian is the 
simplest and most obvious distribution to start with. 

The flow field in the general problem is derived, using a method of charac- 
teristics, in $2;  various particular cases are dealt with in later sections. The 
expansion of a gas cloud is treated as an initial-value problem in $3,  and it is 
shown that, under certain conditions, the flow can be described as a kind of 
collisionless diffusion. In  $ 4 steady and time-dependent sources are discussed, 
and the ‘high Mach number’ limit for a jet is briefly touched upon. Finally, in 
§ 5, a procedure is indicated for taking account of first collisions by extending the 
WilIis method to general unsteady flows. 

2. The general free-molecule free-flow problem 
The basic unknown in a gaskinetic description of a flow is the molecular velocity 

distribution function f = f (x, t; v), giving the number density of molecules at 
position x and time t ,  per unit volume in physical and velocity (v) space. This 
function is governed by Boltzmann’s equation, which, for a monatomic gas in the 
absence of external forces, can be written 

where g( f) -f9( f) stands for the collision integrals (see e.g. Narasimha 1961), 
and where we have included a general source term Q, giving the number of mole- 
cules, per unit (x, v)-volume per unit time, introduced or created at  x, t. If we 
ignore collisions, (2. I) becomes 

af af 
at ax * 
-+v.- = Q (2.2) 

In  this limit the function f is in general discontinuous in velocity space, which can 
often be divided into regions which are vacant (i.e. there are no molecules with 
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velocity vectors lying in them) and regions which are occupied by molecules of 
particular kinds, e.g. those coming from a solid surface if one is present. Though 
the distribution in the occupied regions may be like e-flv2, the /3 does not necessarily 
correspond to the local temperature, and moreover the distribution is usually not 
isotropic, so that it is not a local Maxwellian. The flow is in fact due to the develop- 
ment in time and physical space of these regions in velocity space. 

This development is very generally described by equation (2.2) which is a 
lintear, inhomogeneous first-order partial differential equation, with a vector 
parameter v which takes all possible values. To solve the equation completely 
one has in general to be givenf on a three-dimensional hypersurface in x, t space. 
I n  most practical problems this takes the form of an initial condition in physical 
space, say 

f(x,t = 0; v) = fo(x; v). (2.3) 

Here fo can, of course, be an arbitrary function of x and v. 
The most straightforward way of solving (2.2) is to write down the charac- 

teristics following Courant & Hilbert (1937). In  terms of a parameter s along the 
characteristics, they are governed by the five ordinary differential equations 

df = V, - = Q, 
ax 

- = l ,  - 
at 
as as as 

which have the solution 

t = s ,  x = v s + g ,  f =  s,” Q +fo, (2.5) 

where Q is integrated with respect to s after being expressed as a function of s and 
the co-ordinates g of the initial surface. However, can be eliminated from (2.5) 
and we can write f at any given time as 

f(x, t ;  V) =fo(x-vt; v)+ Q{x-v(~-s),s; v}ds. (2.6) s,” 
This is the general solution of the initial-value problem that was posed earlier. 
The density, gas velocity and all other flow quantities can now be derived as 
appropriate moments off. 

3. Expansion of a gas cloud 
Let us study briefly the case Q = 0. This includes the class of free expansion 

problems, in which one considers a cloud of gas confined within a certain region 
whose boundaries are suddenly removed at time t = 0. I n  such a problemf,, = 0 
outside the cloud, More generally an arbitrary initial distribution over all space 
may begiven. Ineither case, thedistributionatt > Oisobtainedsimplyfrom (2.6) 
by putting Q = 0 to give 

The corresponding flow quantities are most conveniently worked out by making 
the transformation 

x-vt = x’, 

Dx’ = ax; ax; ax; = - t3dv, dv, dv3 = - t3Dv. 

f(x, t ;  v) = fo(x - vt; v). (3.1) 

( 3 4  
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(The notation Dx stands for an element of volume in x-space.) Thus the density 

(3.3) 

where the integration is performed over all x‘.  (Note that Dx’/Dv is just the 
Jacobian of the transformation, and only its absolute value appears in (3.3).) 
The gas velocity u, defined as 

is given by 

Any other flow quantity can be similarly calculated as some transformed moment 
of the initial distribution function. 

Equation (3.4) shows what is apparently a general feature of free gaskinetic 
flows, namely, that the gas velocity can be split into two parts, one of which 
(like x / t )  is purely kinematic, in the sense that it does not depend on any dynamic 
variable (like temperature, e.g.), and another part which is thermal and tends to 
have a characteristic value like 1/,//3 N (WT)) (where W is the gas constant and 
T is the temperature). Physically the kinematic part arises from the presence a t  x 
of molecules which took exactly the time t to get there. It of course vanishes in 
steady free flow. In  unsteady flows it seems to be the counterpart of the asymp- 
totic similarity component of the velocity that one encounters in gasdynamics. 
Some interesting examples of free expansion are worked out below. 

The ‘point’ cloud 

At sufficiently large distances any cloud must look like a point. Thus suppose 
there are N molecules all concentrated at  the origin at t = 0 and having a 
Maxwellian velocity distribution, so that 

fo(x;  v )  = 6(x) N ( P / ~ ) $  e-p“. (3.5) 

6(x)  is the Dirac delta function such that /6(x) Dx = 1 if the integral includes the 
origin. Then from (3.1), (3.3) and (3.10), 

f ( x ,  t ;  v )  = 6(x - vt) ~(/3/n)g e-pv’, 

and u = x/t .  

The result for the velocity is quite obvious, as only molecules with velocity 
v = x/t  can reach x at time t ,  so v = x/t  = u. Also the thermal or peculiar 
velocity c = v - u  is then zero, so the temperature T = 0. At any point x 
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the velocity shoots up suddenly to infinity at t = O f ,  then drops off as t-I. 
The density, on the other hand, builds up gradually from zero to a maximum 
(of 27N/89eQ = 0.07361N/x3) at t = x(%p)*, and drops off like t-3 a t  large times. 
Thus the decay in density.is exponential in space and algebraic in time. 

As may be expected and will be shown later the same solution is obtained if 
f o  = 0 but Q = S(x) S ( t )  N(/3/n)# e+@, which represents a pulse source. Inci- 
dentally, it may be worth noting that as all molecules at x have the single velocity 
x / t ,  the relative velocity g between any two of them is zero, and hence they will 
never collide. Thus, in so far as one can speak of a point cloud with an initial 
Maxwellian distribution expanding into perfect vacuum, equations (3 .6)  given an 
exact fundamental solution of the full Boltzmann equation, because the collision 
integrals vanish identically for (3 .6) .  However, as the full Boltzmann equation is 
non-linear, it  is not possible to superpose these fundamental solutions to derive 
solutions for more complicated problems. 

Symmetric clouds 

We discuss the one-dimensional case in some detail, especially because an exact 
solution of the problem in the gasdynamic limit has been obtained by Greifinger & 
Cole (1960). Suppose the gas is confined between two planes x1 = -t 1 and is 
allowed to expand into vacuum at t = 0. We can then write, assuming the initial 
distribution to be Maxwellian, 

fo (x ;  v) = [&(xl + Z) - 2 ( x 1  - z)] n o ( , 8 0 / m ) ~  e-lo@, 

where 2 is the Heaviside step function. Due to the symmetry, the co-ordinates 
x2, x3 at the point of observation x can be taken to be zero; then, from (3.3),  it is 
easily seen that 

or, introducing < = x1 11 and r = t / l  l/po, 

(3 .7 )  

where p, = mn, is the initial density. This result is the same as that given by 
Molmud (1960),  but we want to give it a different interpretation here. A typical 
density profile is shown in figure 1. 

Now for large times, i.e. for t 4 &(x1 4 I ) ,  (3 .7)  reduces to 

(3.7a) 

where a. = ( 5 9 T 0 / 3 ) f  is the initial speed of sound in a cloud of monatomic 
particles. The density is roughly constant in x, provided x is not too large, and 
drops off as l / t .  
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As might be expected from general similarity considerations, Greifinger & Cole 
find an asymptotic relation identical in form with (3.7a), but with a different 
numerical constant. Their calculation gives, when y = 8, 

PIP0 -N 4(ll%t), 
i.e. about half of what one expects in free molecule flow. 

(3.7b) 

f = x,p 

FIGURE 1. Typical density profile in one-dimensional free expansion. 

Differentiating (3.7) with respect to 6, one obtains 

which is always negative, so p decreases monotonically; but differentiating once 
more it is easily verified that ap/a( is a maximum at a point = E(r) such that 

= coth (@/T2). (3.9) 
- E is plotted versus r in figure 2. For large times (which means, as it will turn out, 
t 9 IdPo), equation (3.9) can be approximated by 

6 = -$7 or zl/t = (zP0)-2. (3.10) 

That is, the region of most rapid change in density travels asymptotically at  a 
definite velocity (2P0)-4 = (L%'To)#, which is equal to the isothermal speed of sound 
in the initial cloud. To find out how this region is spreading, one can define a 

(3.11) 
thickness of the region by 

where Ap is the difference in densities across the region, or (what amounts to the 
same thing) thedensity at x1 = 0;  thisisgiven by ( 3 . 7 ~ ~ ) .  Putting (3.10) into (3.8), 

(3.12) one obtains 6 = t(e/2Po)* N 1.17tP;). 

- 

6 = APl(aP/ax& 

Finally one can work out the gas velocity from (3.4). It is 

(3.13) 
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At large times ( t  B (x, & Z)zlpo), this reduces to u1 N x,/t and a t  small times 
(t  4 (2, k I )  JP0), to u1 N (2, T Z)/t. It may also be verified easily that at  

- 
x1 = XI, u1 = El -+ (2/3,)4 

for t 
To summarize, the flow field can be roughly described as follows. At large times 

there is a growing region of practically uniform density near the centre, but this 
density is falling in time as l/t.  Most of the density change occurs in a layer which 
is travelling with a definite velocity given by (9To)* and whose thickness is in- 
creasing linearly with time. The gas velocity in this layer is also of order (a%)*. 
and the largest mass flow is taking place there. 

I Jpo; and that the mass flow pu, is a maximum at Z,. 

7 = WylPo) 
FIUURE 2. Propagation of the ‘diffusion front’ in one-dimensional free expansion. 

One can carry out an exactly similar analysis of a spherically symmetric cloud, 
to obtain 

where x is now the distance from the origin, and I is the radius of the original cloud. 
The maximum density gradient is located at the solution of 

+ ( E 2  + 7’) + 2%’ = 2E(g2 + 7’) 00th ( 2 9 / ~ ~ ) ;  (3.15) 

for large r we obtain again, by expanding the coth to two orders, exactly the same 
result as before: a velocity of (2P0)-* and a thickness of t(e/2/3,)*. We shall return 
to a, more basic discussion of these flows later. 
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Asymmetric clouds 

It is obvious, from equations (3.3) and (3.4), that the expansion of any arbitrary 
cloud can, at worst, be numerically computed. All the same it is desirable to have 
at least some simple model for asymmetric clouds so that one can get arough 
idea of any tendencies toward symmetry, if in fact such tendencies exist. For this 
purpose we consider a distribution function of the form 

v) = no{exp- (a1x;+a2x;+a3x~)}(P0/;rr)~exp (-Pov2),  (3.16) 

as a model for an asymmetric isothermal cloud. The cloud is actually supposed 
infinite in extent, but the density falls off exponentially with distance. The density 
contours are the ellipsoids 

a,x2,+a,xg+a3zg = const., 

assuming the a are all positive. The advantage of the form assumed in (3.16) is 
that the variables are separable. 

From equation (3.3) we can work out the density at later times as 

(3.17) 

It thus appears that the contours of p are always ellipsoids, but the eccentricity 
of the contours is a function of time. Equation (3.17) shows that as t -+ KI the 
contours become spheres. 

Consider an ellipsoid of revolution, given initially by 

a,x2,+a2R2 = const. = x;/l;+R2/1E, 

where I, and 1, are now proportional to the axes of the ellipsoid, and R is the 
cylindricalradius. From (3.17) the axes of the contours at  later times are related by 

cc ( P O  + a1t2)/P0a17 'i2 OC ( P O +  a 2 t 2 ) / P 0 a 2 ,  

so their ratio is (3.18) 

This equation is plotted in figure 3, as l;/& vs. t/12,//30 for some values of ll/Z2. The 
limit Zl/12 = 0 corresponds to a flat cloud. For oblate spheroids (i.e. 11/12 < 1) the 
shape of the expanded cloud is almost spherical a t  t N 2l2/11pO, and this time 
depends only slightly on the initial eccentricity. The narrow portions of the cloud 
expand out much faster than the other parts. It is interesting to note that the 
flatter the initial cloud, the higher is the rate at which it tends to symmetry, 
though the actual time taken is longer. 

For prolate spheroids (ZJ12  > l), (3.18) can be written 

( 3 . 1 8 ~ )  

which has the same form as (3.18) except that 1Jl2 is replaced by the reciprocal, 
and t is non-dimensionalized with lylpo. With this interpretation, therefore, 
figure 3 also describes the expansion of prolate spheroids. 
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We may then generalize the above results as follows: an asymmetric cloud in 
free-molecule expansion always tends to symmetry, which is roughly achieved at 
times of order 21 Jb, where 1 is the longest initial dimension of the cloud. 

This result is somewhat different from the conclusion reached by Dyson (1958) 
after a gasdynamic analysis of the same problem. He found that an initially 
oblate spheroid actually becomes prolate after expansion, and vice versa. 

7 = W,l iPo)  
FIGURE 3. Eccentricity of expanding ellipsoidal clouds. 

Free-molecule diffusion 
It will be noticed that some of the integrals written down in previous sections 
show a superficial resemblance to those encountered in heat-diffusion problems; 
and this fact has actually been used by Molmud to evaluate them. We want to 
show here that, under certain conditions, there is in fact a peculiar diffusive 
mechanism in the flow. 

We have already expressed the density in free expansion as the integral (3.3); 
differentiating this integral with respect to X, 

(3.19) 

where y = y(x’) = (x-x‘)/t. Comparing (3.19) with the expression (3.4) for u, 
it  is seen that +/ax is proportional to pu, if, and only if, 

(3.20) 

where k is a constant, independent of x. Thus only iffo can be written as g(x) e-A@, 
and so is an isothermalMaxwellian with constant Po, is (3.20) satisfied; and in this 
case the mass flux is indeed proportional to the density gradient, 

(3.21) 

and the flow is irrotational. Putting this relation in the equation of conservation 
of mass ap/at+div(pu) = 0, 
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one obtains (3.22) 

This is a diffusion equation for the density with a time-dependent diffusion 
coefficient. It can be transformed to a diffusion equation with a constant coeEi- 
cient of unity if we put t2/4,8, = 2. Then (3 .22)  becomes 

appr- v = ~  = 0. (3 .23)  

It is thus no surprise to see integrals looking like those in heat diffusion. 
The mechanism of the ‘diffusion’ exhibited in (3 .22)  and (3 .23)  has nothing in 

common with the other familiar phenomena, namely, ordinary diffusion which 
depends on intermolecular collisions, or Knudsen diffusion which depends on 
collisions with surfaces. The mechanism of free expansion can in fact be best 
described as a kind of collisionless or kinematic diffusion. All the peculiar features 
noted earlier, like the diffusive front travelling at a definite velocity and growing 
linearly with time, can be explained now as simple consequences of the diffusion 
coefficient in (3 .22)  being proportional to time. 

The limitations of this interpretation should be clearly understood. In parti- 
cular, it should be noted that if p is not constant, one does not get a diffusion 
equation with a correspondingly variable diffusion coefficient; there simply is no 
diffusion equation in that case, as pu and ap/& cannot be related. Also, if the 
Maxwellian is centred about a non-zero mean velocity, additional terms are 
introduced into the equations. Finally, as we shall see later, the solutions when 
there are time-dependent sources have no simple analogy. 

It thus seems that while the resemblance to diffusion is useful in some problems, 
it is not very general; as the approach through the basic differential equations is 
at least as simple and vastly more general and fundamental, i t  will be adopted in 
the rest of the following work. 

However, relations similar to (3 .21 )  can also be derived for all flow quantities. 
These are interesting as they enable us to find any moment off if one of them 
(e.g. the density) is known. Assuming again that the initial distribution is an 
isothermal Maxwellian, i t  can be shown, from the corresponding expressions for 
the moments and from the equations of motion, that the temperature, pressure 
tensor and heat flow are given by 

-- 

3p.m aT 
4p0 axi’ 

q . = - - -  

(3 .24a)  

(3 .243)  

( 3 . 2 4 ~ )  

These expressions can be put in many other equivalent forms. The pressure tensor 
has the Navier-Stokes form; and though the viscosity coefficients are now time- 
dependent, the Stokesian relation between them is still valid. (An expression like 
(3 .243)  was given by Keller 1948 for the special case of an expanding half-space, 
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in which flow the off-diagonal terms of pij are zero,) Finally, the conductivity 
also increases with time, but the Prandtl number of the flows has the constant 
value 9.  

+ (np)* uo cos 8erfc [@(x/t - uo cos @I}, 

+ &$(I+ 2pu: cos2 8)  erfc [B((x/ t  - uo cos S ) ] }  

+ (exp [ - &x/t - uo cos 8)2] + (np)* uo cos 8 

u(x, t )  = (~x/xzip) (,8*(x/t + uo cos e) exp [ -p(x/ t  - uocos 8)2] 

4. Flow due to sources 
In  this section we are concerned with the flow due to free-molecule sources, and 

so with the non-homogeneous equation (2.2), Q $. 0, and its solution given by 
(2 .6 ) .  Iffo = 0 and we have a pulse source 

Q = &(x, t ;  v) = S(x) S(t )  N(,8/n)Q e-pv', 

we obtain aga,in the point-cloud solution 

f(x,t; v) = S(x-vt)#'(t) N(,8/n)Qe-lwa. 

One problem of particular interest is the continuous point source which emits 
molecules with a given mean velocity u, at a certain rate &(t)  molecules per unit 
time. This would, for example, give the flow field due to a free-molecule jet at large 
distances from the exit. The source in this case has the form 

Q = &(t) ( ,8/~)8 exp { -PCv - uo)'}. (4.1) 

Putting this in (2 .6) ,  one gets 

' (4.5) 

s" (4.2) 
8 

f ( x , t ;  v) = (!) exp(-p(v-uo)2} J{x-v(t-s))$(s)ds. 

If we introduce the transformation 

0- = l / ( t  - s), S{x - v(t - s)} = - d S ( V  - XCT) (4.3) 

in (4.2) and integrate over v, we get 

(4.4) 1 p(x,t) = Srn (~)texp{-/3(x0--uo)2}&(t- I / C T ) C ~ ~ ,  

U(X, t )  = "sm (;)'exp (-,4(xa-uO)2)&(t- I/..) azda. 
P 
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Consider first the symmetric source, u,, = 0. Equations (4.5) then simplify 

2 0  

ea 1.0 -. 
3 

0 

considerably to 

--- 
c_-- 

/-- 

/-- Free-molecule 

I Supersonic 
7 \ /4 

\ i 

Subsonic 

\ 
Incompressible - ------- 

( 4 . 6 ~ )  

(4.63) 

0 1 2 

x/xo 
7 4 

FIGURE 4. Comparison of source flows. 

Naturally, at any given point x the flow becomes steady at very large times 
and the kinematic part of the velocity then vanishes. The field of the steady 
symmetric source is given by 

p = N J @ / 2 7 ~ 3 ~ ~ ,  u = &(~T//~)+x/x, u = I u I  = $(?TIP)& = arc. (4.7) 

The total mass flux a t  any radius is 4nx2pu, = N .  It is very interesting to note that 
the gas velocity is constant throughout, and it is the density that drops off as the 
inverse square of the distance-in contrast to the ordinary incompressible hydro- 
dynamic source. The proper thing to compare it with is actually the supersonic 
source, for which the velocity tends to a constant a t  infinity. A general com- 
parison of the velocity field of gasdynamic and free-molecule sources is made in 
figure 4.1 

t x, in the figure is defined by 0 = 4na,p,x:, where 0 is the total mass flux from the 
source. For the gasdynamic sources p,, a, are the stagnation point values of density and 
sonic speed, and for the free-molecule source a, is the sonic speed at the origin. 

20 Fluid Mech. 19 
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Let us return now to the case uo + 0. From (4.6) it  is obvious that the stream- 
lines still radiate in straight lines from the centre, but now they tend to crowd 
around an axis in the direction u,. The remarks made above concerning the 
unsteady character of the field still apply. They are quite general, in fact. The 
steady field is given by 

(4.8) * I  1 iip 
2 nh2 

p = - - [exp ( - U i )  + duo COB 8 exp ( - UE sin2 8) { 1 + erf (U, cos So)}], 

x U cos 8 exp ( - U i  cos2 6) + (id) ( 1 + 2 U,2 cos2 8) { 1 + erf (U, cos 6)) 
X 

U = u J/3 = - 0 
exp ( - U i )  + n+ U, cos S{ 1 + erf ( U, cos 8)) 

Here U, = u,, JP, and is proportional to the initial Mach number. A t  right angles 
to the axis the density is reduced by the factor exp ( - Ug) in comparison with the 

~ 

symmetric source, but the velocity remains the same. 
3.0 

20 

P 

1.0 

0 
30 60 

8, degrees 

90 

FIGURE 5. Approximate density distribution in a free-molecule jet, with a comparison 
with exact expression. 

The ‘high Much number’ limit 

The case of U, 1 is of some practical interest, and an asymptotic expression for 
the integrals in (4.4) can be obtained using the method of steepest descents (see 
e.g. Jeffreys 1950) in the limit U,+co. One then gets 

It will be noticed that p at (2, t )  depends only on the strength of the source at 
the time (t-xpb/U0cos8); obviously the expressions are valid only when 
t > z/uo cos 8 and are thus not correct a t  8 N &r. As we shall see below, however, 
the density is so small at 8 - Qm that (4.9) is practically good everywhere. 
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In  the case when & is constant the density given by (4.9) has been plotted in 
figure 5, for a few values of U,. The exact solution is also included for U, = 1 and 
the closeness of the approximation for 8 N &r is quite impressive. The agreement 
is of course very much better at the higher Uo for which the density falls off so 
rapidly with increasing 8 that the error committed in using (2.22) for all angles 
is hardly noticeable. It is obvious from (4.9) that the angle of the spread of the 
jet is of order Ucl. 

5. Effect of collisions 
We sketch here an extension of the Willis method for taking approximate 

account of collisions, so that it can be applied to the unsteady problems discussed 
in previous sections. Even the first departure from free-molecular flow becomes 
very complicated in the general unsteady case, however, and can only be solved 
with the aid of a computer. 

The basic idea involves iteration in which one approximates to f by successive 
iterates f o ,  f', etc., where each f is obtained from the previous one from the 
equation (see (2.1)) 

( a p / a t )  + V .  (afyax) = qp-1) - f ~ ~ ( p - i )  + Q ,  (5.1) 

with f O being the free-molecule solution: 

(afo/at) + v . (3f"iax) = &. 

It is of course hoped that the first iterate f will already be a good approximation 
to the departure from free-molecule flow. As we will mostly be concerned only with 
the first iterate, we will study the equation 

(af'/at)+v.(af'/ax) = 9 ( f ~ ) - - f f _ E P ( f O ) + & .  (5.2) 

It will be noticed that 9( f O) acts as a source distribution so that it can be lumped 
with &. In  the following Q will be omitted for the sake of brevity, as all one has to 
do to take account of i t  is to replace 9 by 9 + &. 

Writing 9( f 0) = 9 0  and 9( f 0) = 9, equation (5.2) becomes 

(af ' / a t )  + v .  (af '/ax) + f 1 9 0  = 9 0 ,  ( 5 . 2 ~ )  

a quasi-linear, first-order differential equation. The characteristics of ( 5 . 2 ~ )  are 
given by 

using the initial condition 

dt/ds = 1, dxlds = v, df lids +Pf 1 = 9 0 ;  

f (x, t = 0; v) =fo(x; v) 

t = s ,  x = v s + g ,  
their solution can be written 

20-2 
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Eliminating x and 5 as was done with equation (2.5) and putting x’ = x-vt, 
we get - 

1 fl(x, t ;  v) = fo(x’; v) exp 9O(x‘ +vt’, t ’ ;  v) dt’ 

where 

etc. Note thatfo(x’; v) is just the free-molecule solutionfO(x, t ;  v). 
To proceed further from (5.3) one has to postulate some molecular model. If 

we use the model for scattering proposed by Bhatnagar, Gross & Krook (1954), 
we take S ( f )  and Z(f) to have the form 

20(x, t ;  v) 3 2{fO(X, t ,  v)} 

(5.4) } 
Wf) = An, 
3(f) = AnF = Anz((B/n)% exp { - P(v - u)~}, 

where n, u and /3 are the corresponding moments off. 
Even with this simplified form for the collision terms the calculation turns out 

to be extremely complicated in most cases. Computer calculations are now in 
progress and it is hoped to be able to report on them in the near future. 

Some of this work was originally written as a report for E. H. Plesset Associates, 
Inc. The research has also been partly supported by the Office of Naval Research 
under contract N-onr 220 (21). I wish to thank Dr A. Reifman and Dr H. W. 
Liepmann for helpful discussions. 
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